Lyapunov spectra of billiards with cylindrical scatterers: Comparison with many-particle systems
نویسندگان
چکیده
منابع مشابه
construction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولLyapunov Spectra of Periodic Orbits for a Many-Particle System
The Lyapunov spectrum corresponding to a periodic orbit for a two dimensional many particle system with hard core interactions is discussed. Noting that the matrix to describe the tangent space dynamics has the block cyclic structure, the calculation of the Lyapunov spectrum is attributed to the eigenvalue problem of 16× 16 reduced matrices regardless of the number of particles. We show that th...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولLyapunov spectra with continuous
We present a straightforward and reliable continuous method for computing the full or a partial Lyapunov spectrum associated with a dynamical system specified by a set of differential equations. We do this by introducing a stability parameter β > 0 and augmenting the dynamical system with an orthonormal k-dimensional frame and a Lyapunov vector such that the frame is continuously Gram-Schmidt o...
متن کاملProving The Ergodic Hypothesis for Billiards With Disjoint Cylindric Scatterers
In this paper we study the ergodic properties of mathematical billiards describing the uniform motion of a point in a flat torus from which finitely many, pairwise disjoint, tubular neighborhoods of translated subtori (the so called cylindric scatterers) have been removed. We prove that every such system is ergodic (actually, a Bernoulli flow), unless a simple geometric obstacle for the ergodic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2005
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.72.026216